エンベデッドシステムスペシャリスト試験 (ES)平成 25 年度春期受験再現解答

覆面受験者 X ふたたび

前回、エンベデッドシステムスペシャリスト試験を受験し、見事撃沈されてしまいましたので、リベンジのため、今回も受験してみました。 その「再現解答」「試験場でどう感じたのか」を公開します。

1:再現解答

今回の試験結果は午後 I が 64 点、午後 II が 73 点でした。 前回と同様に、IPA 発表の解答例と再現解答を比較できるようにしています。

午後 I 問 1

設問]		IPA 解答例・解答の要点	再現解答
設問1	(1)		70	70
	(2)	吸	気バルブが閉期間でない期間	クランク角度が可変範囲以外の
				期間
設問2	(1)	サイクル信号が High で、割り込		サイクル信号立ち上がりからク
		み処理でタイマ計測値を読み、		ランク角信号17パルスカウン
		直近の約2倍になるのを検出す		ト後、タイマが0を検出する。
			る。	
	(2)		3333	3333
設問3	(1)	a	クランク角	モータ制御
		b	回転速度算出	通信
		c	バルブ可変量算出	バルブ可変量算出
		d	モータ制御	クランク角
		図	(IPAサイトの解答例をご覧	(未記入)
			ください)	
	(2)	1	エンジン回転速度	エンジン回転速度
		2	エンジンの負荷情報	エンジンの負荷情報

(コメント)

エンジン制御は全く未知の分野であったため、設問を読んで内容を理解すること に多くの時間を費やしてしまいました。

とりわけ設問 3(1) タスク実行順序の問題には時間がかかり、残り時間が少なくなってきたため、途中で投げ出して問 3 に移りました。

そのため設問 3 の(1)abcd は適当に書いただけです。タスクの実行状況図は、時間がなく解答することが出来ませんでした。

試験時間が短い午後 I では、計算問題や、じっくり考えなければならないタスク実行順序の問題は、厳しいものがあります。

午後 I 問 3

設問			IPA 解答例・解答の要点		再現解答
設問1	(1)	a	回転速度		回転数
		b		周波数	周波数
		c		振幅	実効値
		d		低下	低下
	(2)	水平方		向と垂直方向の首振りを独立に	ファンモータの回転数が可変の
				おこなうから。	ため首振り駆動源にできないた
					め。
1	(3)	_		なった角度の範囲の30°内側を	首振り中、人感センサが High 期
				人のいる方向と判断する。	間の中心を人のいる方向とす
					る。
設問2	(1)	e		50 マイクロ	20 ミリ
		f		位相	位相
		g		小さく	小さく
		h		補間処理	補正
	(2)	1		ファンの回転速度情報	ファンモータの回転速度指定
	ŀ			首振りの停止情報	N. I. N. Hayle
		2		情報の送信先 MCU の情報	首振り指定
設問3	(1)			190.5	(未記入)
	(2)	A	1	シリアル I/F の通信時間	ファンモータ停止コマンドの通
					信時間
			2	コマンドの解析時間	ファンモータ停止コマンドの解
					析時間
		b	フ	アン制御 MCU への割込み信号	きん急停止信号を 1bit で伝える
					信号
	(3)	機能		動作を再開する機能	きん急停止コマンド
		制	御	異常検出時には動作再開以外の	(何を書いたか、記憶が無いで
				コマンドは無視する	す。)

(コメント)

問1で時間を使いすぎたため、残り時間で慌てて解答しています。

そのため、解答の文章は、吟味できていません。

慌てていたので、設問 2(1)e は 50Hz の 1 周期を計算する設問と思い込んで答えを書いてしまいました。

設問 3(1)の計算問題を解答する時間が取れませんでした。

設問 3(2)では、「緊」という漢字をド忘れしてしまい、ひらがなで書いています。 $(^{-}$;)

午後Ⅱ 問1

	後 II 同 I					
設問	設問		IPA 解答例・解答の要点	再現解答		
設問 1	(1)	姿勢	労制御による舵の操作の方が、	風などの外乱による姿勢変化に		
			緊急性が高いから	対応した制御を行うため		
	(2) 旋[回して再度、撮影地点を通過す	大きく旋回して撮影地点に再度		
			るような経路	向かう経路を設定する		
	(3)	情報	機体の現在の姿勢	ピッチ角とロール角		
		使用	写真撮影時に機体が水平か	機体がほぼ水平状態と判断する		
		方法	どうかを確認するために使	範囲内か否かにより、撮影可否		
			用する。	判断に使用する。		
設問 2	(1)	a	16.7	16.7		
		b	加速度情報から移動方向と速	姿勢センサ信号と速度を用い、		
			度を求め、積分することで	前回GPS測定時から撮影地点		
			GPS 情報を補正する。	到達予定時刻を計算する。		
	(2)		300	300		
	(3)	a	6.0	6.0		
			,			
		b	177	20		
設問 3	(1)	b a	ドライバ 4	20 ドライバ 4		
設問3	(1)					
設問 3	(1)	a	ドライバ 4	ドライバ 4		
設問 3	(1)	a b	ドライバ 4 断線による不通電	ドライバ 4 断線		
設問 3	(1)	a b c	ドライバ 4 断線による不通電 小さ	ドライバ 4 断線 低		
設問 3		a b c	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点 1 リレー接点 2	ドライバ 4 断線 低 ダミー抵抗		
設問 3		a b c d	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2		
設問 3		a b c d	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2 正常時 閉 開		
設問 3	(2)	a b c d 正常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点 1 リレー接点 2 時 閉 開 時 閉 閉	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2 正常時 閉 開 異常時 閉 閉		
設問 3	(2)	a b c d 正常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開 時 閉 閉	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2 正常時 閉 開 異常時 閉 閉 前回と今回のGPS時刻情報が		
設問 3	(2)	a b c d 正常異常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開 時 閉 閉	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2 正常時 閉 開 異常時 閉 閉 前回と今回の G P S 時刻情報が 同じ状態		
設問 3	(2)	a b c d 正常異常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開 時 閉 閉 時刻情報が前回と同じ値であること 判 通し番号が変化していな	ドライバ 4 断線 低 ダミー抵抗 リレー接点1 リレー接点2 正常時 閉 開 異常時 閉 閉 前回と今回のGPS時刻情報が同じ状態 前回と今回のデータの通し番号		
設問 3	(2)	a b c d 正常異常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開 時 閉 閉 時 別 閉 時刻情報が前回と同じ値であること 判 通し番号が変化していな 断 いこと	ドライバ 4 断線 低 ダミー抵抗 リレー接点1 リレー接点2 正常時 閉 開 異常時 閉 閉 前回と今回のGPS時刻情報が同じ状態 前回と今回のデータの通し番号が同じ状態		
設問 3	(2)	a b c d 正常異常	ドライバ 4 断線による不通電 小さ ダミー抵抗 リレー接点1 リレー接点2 時 閉 開 時 閉 閉 時刻情報が前回と同じ値であること 判 通し番号が変化していな 断 いこと 動 その場旋回指示を出し、地	ドライバ 4 断線 低 ダミー抵抗 リレー接点 1 リレー接点 2 正常時 閉 開 異常時 閉 閉 前回と今回のG P S 時刻情報が同じ状態 前回と今回のデータの通し番号が同じ状態 M P U 2 はその場旋回指示を出		

(コメント)

午後 I の解答の出来が悪かったので「落ちた」と確信していたため、テンションが下がった状態で解答し、見直しもせずに退席してしまいました。

設問 2(3)b は、どのように考えてどのように計算したのか、メモが残っておらず、記憶がありません。

採点は、午後 I と比べると、厳しめかな?という印象です。

2:試験会場での問題選択の理由

前回は戦略を考えず、問題文の長さや見た目だけで感覚的に選択しました。

下名は、元ハードウエア屋だったので、今回は「ハードウエア問題なのか、ソフトウエア問題なのか」を確認し、ハードウエア問題を選択しました。

エンベデッドシステムスペシャリスト試験を受験される方は、得意分野が「ハードウエア」なのか「ソフトウエア」なのかによって、問題を選択されるのが、合格への近道と思います。

3:試験会場で解答している際にどう感じたのか

(1) 午後 I

問1は、下名が今まで携わったことが無い「エンジン制御」であったので、問題 文を読んで理解するのに時間がかかりすぎ、あせりました。

問1の問題文を読み始めたところで、精神的な余裕が無くなり、軽いパニック状態 に陥ってしまったということが、主原因です。

結局、問1は中途半端な状態で打ち切って、問3に移りました。

問1で時間を浪費してしまい、残り時間が少なかったことから、気分の切り替えを することもできず、慌てて問3を解答しました。

結局、問3は深く考えることができず、思いつきの解答を解答用紙にそのまま書きなぐってしまいました。

(2) 午後Ⅱ

テンションが下がった状態で「次回のための模試を受ける」という「軽い気持ち」 になっていました。そのため、問題文を「読み物」のように感じることが出来て、 問題文の理解が早かったようです。

全くダメな解答が計算問題の設問 2(3)b だけであったのは、この「軽い気持ち」が良かったのかもしれません。(計算問題も「軽い気持ち」で解いているので、設問2(3)b を間違えたともいえますが・・・)

4:試験を受けた感想

(1) 受験後の「手ごたえ」

受験後の「手ごたえ」としては、今回の方が出来が悪かったと感じています。 午後 I 試験が終わった時点で「今回も落ちた」と確信し、午後 II は「模試として受験し、買物するため早めに帰ろう。」と思い、解答内容の見直しもせず、1 時間少々で退席しました。そのため、午後 II も今回の方が出来が悪いと思っています。 6月21日「前回よりも悪い点数のはず。何点で落ちたのかな?」と思って IPA のサイトを見てビックリでした。今回の採点では、解答の意図が正答と類似していれば加点してくれたようです。もし前回の採点方法であれば、ひどい点数で落ちていたでしょう。

(2) 今回の試験問題の印象

下名が解いた午後 I 問 1 問 3 と午後 I 問 1 において、前回のような「変問」は無かったと思います。

とはいえ、解答に時間がかかる設問を午後Iに持ってこられるのは、つらいものがあります。計算問題や、タスクの実行順序を解答させるような時間がかかる設問は、午後IIに集約してもらえたら、と思います。

(3) 高度区分の試験の印象

前回も書いたように、高度区分の試験は、以下の理由によって、その区分に関する深い知識・技能を前提とした「国語の試験」という印象です。

- ・出題者の意図をうまく「汲み取って」解答しなければならない。
- ・設問の指定事項に従わない答えを書いてはいけない。(読み落とし厳禁!)
- ・設問数が少ないので、ちょっとしたミスが命取りになる。

わかっちゃいるけど・・・今回も。

5:おわりに

覆面受験者 X のエンベデッドシステムスペシャリスト受験は、これにて終結です。 前回のレポートと今回のレポートが、エンベデッドシステムスペシャリスト試験を 受験される方の役に立てば幸いです。

次回、覆面受験者Xは、別の区分に挑戦したいと思っています。